Faculty of Computers and Artificial Intelligence

CS222: Computer Architecture

Assignment no 02:

Chapter 2: Combinational Logic Design

Note: You can check the exercises after the Chapter of the Book. In our assignment, we are using 2^{nd} Edition of "Digital Design and Computer Architecture" By David harris and Sarah harris.

Exercise 2.24 Write Boolean equations for the circuit in Figure 2.82. You need not minimize the equations.

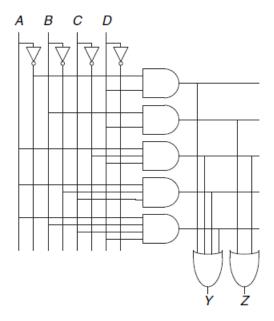


Figure 2.82 Circuit schematic

Exercise 2.34 Complete the design of the seven-segment decoder segments S_c through S_g (see Example 2.10):

- (a) Derive Boolean equations for the outputs S_c through S_g assuming that inputs greater than 9 must produce blank (0) outputs.
- (b) Derive Boolean equations for the outputs S_c through S_g assuming that inputs greater than 9 are don't cares.
- (c) Sketch a reasonably simple gate-level implementation of part (b). Multiple outputs can share gates where appropriate.

Faculty of Computers and Artificial Intelligence

CS222: Computer Architecture

Exercise 2.36 A priority encoder has 2^N inputs. It produces an N-bit binary output indicating the most significant bit of the input that is TRUE, or 0 if none of the inputs are TRUE. It also produces an output NONE that is TRUE if none of the inputs are TRUE. Design an eight-input priority encoder with inputs $A_{7:0}$ and outputs $Y_{2.0}$ and NONE. For example, if the input is 00100000, the output Y should be 101 and NONE should be 0. Give a simplified Boolean equation for each output, and sketch a schematic.